

CMOS Sensors for the HFT:

Binary Output Chip Performances

M.W. (IPHC-Strasbourg)

OUTLINE

- - * detection efficiency
- * fake hit rate

* single point resolution

- Extrapolation to next generations of chips
 - * consequence of different pixel pitch
- * effect of noisy pixels
- \Rightarrow Where is the optimum?

Conclusion

- MIMOSA-16 : \sim fully tested chip with binary output
- Evaluate whether architecture (AMS-0.35 OPTO) is mature for large scale chip :
 - * range of discriminator threshold for which detection efficiency and fake rate are both OK?
 - * does this range allow for the ambitionned single point resolution?
 - * what about fakes (\equiv noisy or hot pixels)?
 - * what about effects of radiation ? \triangleright \triangleright not yet investigated
- Try to extrapolate observations to different pixel pitch
 - * PHASE-1 : 30 μm * *ULTIMATE* : ?????????

High R.-O. Speed Architecture: 2nd Prototype = MIMOSA-16

MIMOSA-16 design features :

- ullet AMS-0.35 OPTO translation of MIMOSA-8 \hookrightarrow \sim 11–15 μm epitaxy instead of \lesssim 7 μm
- ullet 32 // columns of 128 pixels (pitch: 25 μm)
- on-pixel CDS (DS at end of each column)
- 24 columns ended with discriminator
- 4 sub-arrays :
 - S1 : like MIMOSA-8 (1.7x1.7 μm^2 diode)
 - S2 : like MIMOSA-8 (2.4x2.4 μm^2 diode)
 - S3: S2 with ionising radiation tol. pixels
 - **S4**: with enhanced in-pixel amplification
 - (against noise of read-out chain)

- Tests of analog part ("20" & "14" μm epitaxy) :
 - ullet sensors illuminated with $^{55}{
 m Fe}$ source and ${
 m F}_{r.o.}$ varied up to \gtrsim 150 MHz
 - ullet measurements of N(pixel), FPN (end of column), pedestal variation, CCE (3x3 pixel clusters) vs $F_{r.o.}$
- lacksquare M.i.p. detection with Si-stip telescope studied at CERN in Sept. '07 igwedge characterisation of digital response :
 - $\bullet~\pi^-$ beam of \sim 180 GeV/c
 - measurements of SNR, det. efficiency, fake rate, cluster characteristics, spatial resolution vs discri. threshold

MIMOSA-16 Beam Test Results (Digital Part)

- lacksquare CERN-SPS (\sim 180 GeV π^-) \rightarrowtail results of S4 ("14 μm " epitaxy)
- **Read-out time** \sim **50** μs (\sim 1/4 of max. freq. due to DAS limitations)

lacksquare Major result $m\mapsto$ at least one pixel architecture validated for next steps : S4 (SNR \sim 16)

Discri. Threshold	det. efficiency	fake rate	sgle pt resolution
4 m V	99.96 \pm 0.03 (stat) %	\sim 2·10 $^{-4}$	\sim 4.8–5.0 μm
6 m V	99.88 \pm 0.05 (stat) %	$<$ 10 $^{-5}$	\sim 4.6 μm

MIMOSA-16 Beam Test Results : Eff. vs Fakes

Investigate whether 1-pixel clutsers or 2-pixel clusters are more appropriate

Nb(pix)/cluster	1 pixel per cluster		2 pixels per cluster	
Threshold (mV)	Efficiency (%)	Fake rate	Efficiency (%)	Fake rate
3.0 ± 0.10	99.94 ± 0.04	5.51E-03±1.16E-05	99.66 ± 0.04	5.48E-04±3.66E-06
3.5 ± 0.10	99.96 ± 0.03	1.30E-03±6.11E-06	99.23 ± 0.03	3.11E-05±9.46E-07
4.0 ± 0.10	99.96 ± 0.03	1.94E-04±2.46E-06	98.16 ± 0.03	1.79E-06±2.36E-07
4.6 ± 0.10	99.94 ± 0.03	3.82E-05±1.06E-06	96.00 ± 0.03	7.76E-07±1.51E-07
5.0 ± 0.10	99.88 ± 0.05	1.53E-05±7.35E-07	94.07 ± 0.05	1.48E-06±2.28E-07
6.0 ± 0.10	99.79 ± 0.07	6.29E-06±3.82E-07	89.82 ± 0.07	6.91E-07±1.27E-07
7.0 ± 0.10	99.19 ± 0.13	1.30E-06±1.81E-07	79.56 ± 0.13	5.81E-07±1.21E-07
7.8 ± 0.10	98.43 ± 0.19	9.35E-07±1.57E-07	71.74 ± 0.19	5.84E-07±1.24E-07
10.0 ± 0.10	94.34 ± 0.41	8.12E-07±1.39E-07	<i>54.03</i> ± <i>0.41</i>	5.50E-07±1.14E-07

^{■ 1-}pixel/cluster with high threshold is more effective >>> what about hot pixels after irradiation ?

⇒ foresee 2-pixel requirement logic, to be activated if necessary after some data taking period

- Architecture validated for PHASE-1 (in absence of intense radiation)
 - ⇒ binary output provides ambitionned single point resolution
- Still to do:
 - * investigate effects of ionising and non-ionising radiation
- * (clarify effect of operating temperature?)

- **Extrapolation to PHASE-1 and ULTIMATE:**
 - ** PHASE-1 : \sim 30 μm pitch \rightarrow expected single point resolution \sim 6 μm
 - st ULTIMATE single point resolution from \sim 4 μm (\lesssim 20 μm pitch) \rightarrowtail \sim 8–9 μm (\sim 35 μm pitch)
- **Questions:**
 - \divideontimes Is a single point resolution of 8–9 μm in one dimension (rectangular pixels) acceptable ?
 - ← need also to study detection efficiency vs T, rad. dose, etc.
 - * Several other aspects to investigate ????